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Peak Deforestation in Mid-1800s

Harvard Forest Museum
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Mid-1800s Peak Deforestation
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Mid-1800s Peak Deforestation
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Global Land Cover Change

Crop and Pasture Fraction Difference: 1992-1870
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Lee et al. 201 |

Biophysical Processes

* Evapotranspiration
* Albedo
* Surface roughness
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Biophysical Processes

. L L
* Albedo
* Surface roughness




Biophysical Processes

+ Albedo = SW,, /SW

down
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Cooler open lands due to increased shortwave being reflected

when snow is present. N



Biophysical Processes

+ Albedo = SW,, /SW

down

Snow Covered Forest 0.25
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Warmer forests due to decreased shortwave being reflected.
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Biophysical Processes

* Surface roughness

Warmer forests at night from enhanced mixing and higher
turbulence at night over rough canopies. .
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Biophysical Processes

* Albedo
* Surface roughness

Warmer over open land during the day from suppressed mixing;
rough forest canopies dissipate sensible heat more efficiently. .
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Biophysical Processes

Albedo & surface roughness effects are of
opposite sign.
Which dominates in temperate winter?




Diurnal Temperature Differences:
Pasture vs. Forest

Cooler at night over
pasture compared to
adjacent canopy tower
site
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Diurnal Temperature Differences:
Pasture — Forest
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Weather, Research, and Forecasting (VWWRF)
Model V3.5.1 to evaluate mid-1800’s climate
responses to deforestation

* How well do WRF configurations simulate extremes in
cold season (Dec-Mar) climate in New England?

* Do climate responses to deforestation vary with VWRF
model configuration?

*  What are the dominant biophysical processes controlling
climate responses to deforestation?




Modeling Approach

e Simulate climatic extremes

* Develop mid-1800s deforested land cover
scenario

* Use a multi-physics ensemble to evaluate
response to land cover change




Climate Extremes

(1) Cold, snowy Dec 2008 through March 2009
(2) Warm, dry Dec 201 | through March 2012

State Temperature % Precip of normal
Departure (°C)

Cold, Snowy Warm, Dry Cold, Snowy Warm, Dry
(2008/09) (2011/12) (2008/09) (2011/12)
Connecticut -0.6 +2.9 106% 81%
Maine -1.4 +2.6 1 10% 88%
Massachusetts -0.5 +2.7 120% 76%
New Hampshire -0.7 +2.8 123% 88%
Rhode Island -0.9 +2.2 | 15% 75%
Vermont -0.6 +2.7 1 19% 82%

* ERA-Interim initial conditions, lateral boundaries, and sea
surface temperature (6h)

* 4-month cold season (Dec-Mar) simulations, | month spin-up



Modeling Domains, one-way nests
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Land Cover Scenarios

Dry Crop & Pasture

24



WRF Multi-Physics Ensemble

Three land surface models

Two longwave/shortwave (LW/SW) schemes
Two microphysics schemes

|2 ensemble members

* Yonsei University Planetary Boundary Layer scheme
* Kain-Fritsch cumulus scheme (domain | and 2 only)

Why Use a Multi-Physics Ensemble?
Characterize uncertainty in land cover response
related to physics parameterizations.



Land Surface Models:

VWRF/NOAH-MP

Semi-tile subgrid scheme:

Longwave (L), Latent heat

(LE), Sensible heat (H),
Ground heat (G) fluxes for
veg and bare portions

Shortwave fluxes entire grid

cell w/ gap probabilities as
function of SZA and 3D
structure of canopy

Single layer canopy
Three-layer snowpack

Four-layer soil column
26
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Land Surface Models:
WRF/NOAH'MP Niu et al. 201 |

Leaf Area Index

Turbulent transfer

Soil moisture stress factor
Canopy stomatal resistance

Snow surface albedo

_ 9,216

Frozen soil permeability Combinations

Supercooled liquid water

418 billion

Radiation transfer WRF/NOAH-MP

Precipitation partitioning

AN W N DN DMNMNMDNDND WDND DN

Runoff and ground water



La_ N d S ] rfac e M e d e I S: http://www.iges.org/lsm/Yang_S2_LSM.pdf

WRF/NOAH'MP Niu et al. 201 |
Leaf Area Index Prescribed by veg. type
Turbulent transfer Original Noah

Soil moisture stress factor Original Noah

Canopy stomatal resistance Ball-Berry

Snhow surface albedo BATS & CLASS
Frozen soil permeability Linear, more permeable
Supercooled liquid water No iteration

Radiation transfer Modified two-stream
Precipitation partitioning Snow when T<0C

Runoff and ground water Original Noah



Noah MP Albedo Options

Biosphere-Atmosphere Transfer Scheme (BATS)
Direct and diffuse radiation over visible and near-
infrared wave bands, accounting for fresh snow
albedo, variations in snow age, solar zenith angle,
grain size growth, and impurities (more CLM-like)

Canadian LAnd Surface Scheme (CLASS)
Accounts for fresh snow albedo and decrease in
albedo with snow age.




Land Surface models: jin ecal. 2010
Lu and Kueppers, 2012
WRF/C LM4.0 OIesonPePt al., 20I0‘

Called as a sub-routine in WREF

Five sub-grid land cover types
(glacier, lake, wetland, urban,
vegetated)

Vegetated subgrid includes up
to 16 Plant Functional Types

USGS 24-class land cover
translated into 5 sub-grid land
cover types and/or PFTs

Glacier Wetland Vegetated Lake Urban

Single layer canopy

Five-layer snowpack

Ten-layer soil column 0



Longwave/Shortwave Schemes:

(I) RRTM/Goddard
- Rapid Radiative Transfer Model Longwave:
« CO, =379 ppm
* N,O =319 ppb
« CH, = 1774 ppb

(2) CAM/CAMV5. |

- CAM Longwave:
* CO, = annual values
* N,O =311 ppb
« CH, =1714ppb



Microphysics

(1) WRF Single-Moment 6-class (WSM6)
- Hong and Lim, 2004
- Mixing ratios of water vapor, cloud water, cloud
ice, snow, rain, and graupel
- Spherical snow with constant bulk density
- Exponential shape for snow size distribution

(2) Thompson et al. 2008 (Thompson 08)
- cloud water, cloud ice, snow, rain, and graupel
- Non-spherical snow
- Sum of exponential and gamma snow size
distributions



WRF Multi-Physics Ensemble

Simulation Land Surface Model

O 00 N oo L1 »h W DN

— o

CLM

NoahMP| (BATS albedo)
NoahMP2 (CLASS albedo)
CLM

NoahMPI

NoahMP2

CLM

NoahMPI

NoahMP2

CLM

NoahMPI

|2 NoahMP2

*YSU PBL in all simulations

Longwave/Shortwave

RRTM/Goddard
RRTM/Goddard
RRTM/Goddard
CAM/CAM
CAM/CAM
CAM/CAM
RRTM/Goddard
RRTM/Goddard
RRTM/Goddard
CAM/CAM
CAM/CAM
CAM/CAM

**Kain-Fritsch Cumulus in domain | and 2

Microphysics
WSMé6
WSMé6
WSMé
WSMé6
WSMé6
WSMé
Thompson 2008
Thompson 2008
Thompson 2008
Thompson 2008
Thompson 2008
Thompson 2008



Model Validation, WRF minus PRISM Land Surface Models

CLM NoahMPIl NoahMP2
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Model Validation,WWRF minus PRISM  Microphysics Schemes

WSMé

ThO8
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Model Validation, WRF minus PRISM
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T2max Cold, Snowy Warm, Dry
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T2max Cold, Snowy
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T2max Cold, Snowy Warm, Dry
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T2min Cold, Snowy Warm, Dry
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T2min Cold, Snowy
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WRF/CLM4.0 generally better ...

Standardized Deviations (Normalized)
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PI‘ECiP. Cold, Snowy
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Hard to say any are “better”

Standardized Deviations (Normalized)
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Model Comparison of Snow Depth
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Model Comparison of Snow Depth
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Model Comparison of Snow Depth
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Albedo vs. Snow Depth

OOOOOOOOO

~h,,,,/0.1
Noah-MP: hsnOW,c = hv,t *e

CoCoRAHS Data: Burakowski et al., 2013
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WRF and MODIS albedo
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WRF and MODIS albedo
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WRF and MODIS albedo
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How well do WRF configurations simulate
extremes in cold season climate!?

- WRF/CLM4.0 reasonably simulates Tmax and Tmin
- WRF/Noah-MP warm bias (+5 to +8K) in Tmax
—  All configurations fail to capture precipitation

—  Snow-covered deciduous broadleaf albedo overestimated in
all models

—  Snow-covered evergreen needleleaf albedo underestimated
in WRF/NoahMP




Climate responses to deforestation

All results are Present-Day minus Mid-1800s Deforested
Expect to see:

* Warmer T2max over forest (albedo effect)

* Warmer T2min over forest (surface roughness)




Land Cover Scenarios

Dry Crop & Pasture

57



Warmer T2Max in Present-Day Reforested compared
to Mid-1800s Deforested
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Warmer T2Max in Present-Day Reforested compared
to Mid-1800s Deforested
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Stronger albedo decrease in Cold, Snowy compared to

warm, dry season
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Cooler T2min with Evergreen Needleleaf & warmer T2min with Decid.
Broadleaf compared to Mid-1800s Deforested

CLM  NoahMPI| NoahMP2 CLM NoahMPl NoahMP2

WSMé

Thompson

[ B B
3 2 -1 0

Present-Day Minus Deforested T2min (°C)

6l



Dominant Biophysical Processes

Daytime
- Albedo: warmer forests due to increase in SW absorbed
by vegetation (albedo)
- Surface Roughness: cooler forests due to more

efficient dissipation of sensible heat & warmer open land
due to suppressed mixing

Nighttime
- Surface Roughness: warmer forests due to enhanced

mixing, drawing warmer air from aloft during stable
conditions




Diurnal change in surface energy fluxes:
Evergreen Needleleaf minus Grass/Crop
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Larger increase in shortwave absorbed by vegetation (SWV Veg) in

Noah-MP compared to CLM.
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Diurnal change in surface energy fluxes:
Evergreen Needleleaf minus Grass/Crop

2008 Evergreen Needleleaf min
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2011 Evergreen Needleleaf min

== (Ground Heat = Sensible Heat == | 3tent Heat
== | Ongwave == SW Bare Ground == SW Veg

Larger increase in ground heat flux in 201 1/2012 with low snow
cover. Ground heat flux negative at night (soil cooling).



Diurnal change in surface energy fluxes:
Deciduous Broadleaf minus Grass/Crop

A Flux

A Flux

A Flux

2008 Deciduous Broadleaf minus Grass/Crop Mosaic

2011 Deciduous Broadleaf minus Grass/Crop Mosaic
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== (Ground Heat = Sensible Heat
== | ONgWwave

== | gtent Heat

== SW Bare Ground == SW Veg

Increase in SWV absorbed by vegetation in all LSMs.
Decrease in SW absorbed by ground in CLM. Increase in NoahMP.
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Diurnal change in surface energy fluxes:
Deciduous Broadleaf minus Grass/Crop

A Flux

A Flux

A Flux

2008 Deciduous Broadleaf minus Grass/Crop Mosaic

2011 Deciduous Broadleaf minus Grass/Crop Mosaic
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== Ground Heat == Sensible Heat

== | ONgWwave

== | gtent Heat

== SW Bare Ground == SW Veg

Increase in SWV absorbed by vegetation in all LSMs.
Decrease in SW absorbed by ground in CLM. Increase in NoahMP.
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Diurnal change in surface energy fluxes:
Deciduous Broadleaf minus Grass/Crop

2011 Deciduous Broadleaf mir

2008 Deciduous Broadleaf mi
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== Ground Heat == Sensible Heat == | gtent Heat
== |longwave == SW Bare Ground == SW Veg

Increase in SWV absorbed by vegetation in all LSMs.
Decrease in SW absorbed by ground in CLM. Increase in NoahMP.



Responses to Mid-1800s Deforestation
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Responses to Mid-1800s Deforestation

Present-Day Forest minus Mid-1800s
T2min Difference (C)
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T2min cooler over
evergreen needleleaf
forest compared to
crop/pasture due to
increase in ground
heat flux.

Still investigating...

- wind speed

- stable BL

- cloud cover

- proximity to
ocean/land breeze
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Summary

*  How well do WREF configurations simulate extremes in cold season
(Dec-Mar) climate in New England?

Choice of land surface model influences of T2max
Choice of longwave radiation scheme influences T2min
WRF/CLM generally better at simulating temperature extremes

Precipitation not simulated well by any physics configuration
tested here

Snow-covered albedo of deciduous broadleaf forest
overestimated relative to MODIS by all model configurations

Snow-covered albedo of evergreen needleleaf underestimated
relative to MODIS by all model configurations



Summary

Do climate responses to deforestation vary with WRF model
configuration?

- T2max warms in all physics configurations

—  T2min response is uncertain; multi-physics ensemble spans
both cooling and warming responses.

- Unclear why observed warming at night (e.g., T2min) driven by
changes in surface roughness over forest compared to open
land is not consistently simulated by the ensemble.




Dominant Biophysical Processes

Daytime (T2max)

- Albedo: warmer forests due to increase in SW absorbed
by vegetation (albedo)

- Surface Roughness: cooler forests due to more
efficient dissipation of sensible heat & warmer open land
due to suppressed mixing

Nighttime (T2min)
- Generally warmer deciduous broadleaf. Cooler mixed

forest and evergreen needleleaf due to increase in ground
heat flux (less negative).




Future Work

Summer biophysical impacts of land cover change




Future Work

Summer biophysical impacts of land cover change

Whither are New England Forests headed?




Future Work

Summer biophysical impacts of land cover change

Where are New England Forests headed!?

And for that matter, climate?







